Theoretical estimation of metabolic network robustness against multiple reaction knockouts using branching process approximation

نویسندگان

  • Kazuhiro Takemoto
  • Takeyuki Tamura
  • Tatsuya Akutsu
چکیده

In our previous study, we showed that the branching process approximation is useful for estimating metabolic robustness, measured using the impact degree. By applying a theory of random family forests, we here extend the branching process approximation to consider the knockout of multiple reactions, inspired by the importance of multiple knockouts reported by recent computational and experimental studies. In addition, we propose a better definition of the number of offspring of each reaction node, allowing for an improved estimation of the impact degree distribution obtained as a result of a single knockout. Importantly, our proposed approach is also applicable to multiple knockouts. The comparisons between theoretical predictions and numerical results using real-world metabolic networks demonstrate the validity of the modeling based on random family forests for estimating the impact degree distributions resulting from the knockout of multiple reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the impact degree distribution in metabolic networks using branching process approximation

Theoretical frameworks to estimate the tolerance of metabolic networks to various failures are important to evaluate the robustness of biological complex systems in systems biology. In this paper, we focus on a measure for robustness in metabolic networks, namely, the impact degree, and propose an approximation method to predict the probability distribution of impact degrees from metabolic netw...

متن کامل

Structural robustness of metabolic networks with respect to multiple knockouts.

We present a generalised framework for analysing structural robustness of metabolic networks, based on the concept of elementary flux modes (EFMs). Extending our earlier study on single knockouts [Wilhelm, T., Behre, J., Schuster, S., 2004. Analysis of structural robustness of metabolic networks. IEE Proc. Syst. Biol. 1(1), 114-120], we are now considering the general case of double and multipl...

متن کامل

Exact quantification of cellular robustness in genome-scale metabolic networks

MOTIVATION Robustness, the ability of biological networks to uphold their functionality in spite of perturbations, is a key characteristic of all living systems. Although several theoretical approaches have been developed to formalize robustness, it still eludes an exact quantification. Here, we present a rigorous and quantitative approach for the structural robustness of metabolic networks by ...

متن کامل

Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli.

Recent genomic analyses on the cellular metabolic network show that reaction flux across enzymes are diverse and exhibit power-law behavior in its distribution. While intuition might suggest that the reactions with larger fluxes are more likely to be lethal under the blockade of its catalysing gene products or gene knockouts, we find, by in silico flux analysis, that the lethality rarely has co...

متن کامل

Estimation of Software Reliability by Sequential Testing with Simulated Annealing of Mean Field Approximation

Various problems of combinatorial optimization and permutation can be solved with neural network optimization. The problem of estimating the software reliability can be solved with the optimization of failed components to its minimum value. Various solutions of the problem of estimating the software reliability have been given. These solutions are exact and heuristic, but all the exact approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013